- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Alexeev, Alexander (3)
-
Demirer, Ersan (3)
-
Erturk, Alper (1)
-
Oshinowo, Oluwafikayo A. (1)
-
Wang, Yu-Cheng (1)
-
Yeh, Peter D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Using computational modelling, we probe the hydrodynamics of a bio-inspired elastic propulsor with hybrid actuation that oscillates at resonance in a Newtonian fluid. The propulsor is actuated by a heaving motion at the base and by an internal bending moment distributed along the propulsor length. The simulations reveal that by tuning the phase difference between the external and internal actuation, the propulsor thrust and free-swimming velocity can be regulated in a wide range while maintaining high efficiency. Furthermore, the hybrid propulsor outperforms propulsors with either of the actuation methods. The enhanced performance is associated with the emerging bending pattern maintaining large tip displacement with reduced centre-of-mass displacement. The results are useful for developing highly efficient robotic swimmers utilizing smart materials as propulsors with simplified design and operation.more » « less
-
Demirer, Ersan; Wang, Yu-Cheng; Erturk, Alper; Alexeev, Alexander (, Journal of Fluid Mechanics)null (Ed.)In this work we investigate the effects of two distinct actuation methods on the hydrodynamics of elastic rectangular plates oscillating at resonance. Plates are driven by plunging motion at the root or actuated by a distributed internal bending moment at Reynolds numbers between 500 and 4000. The latter actuation method represents internally actuated smart materials and emulates the natural ability of swimming animals to continuously change their shapes with muscles. We conduct experiments with plunging elastic plates and piezoelectric plate actuators that are simulated using a fully coupled three-dimensional computational model based on the lattice Boltzmann method. After experimental validation the computational model is employed to probe plate hydrodynamics for a wide range of parameters, including large oscillation amplitudes which prompts nonlinear effects. The comparison between the two actuation methods reveals that, for the same level of tip deflection, externally actuated plates significantly outperform internally actuated plates in terms of thrust production and hydrodynamic efficiency. The reduced performance of internally actuated plates is associated with their suboptimal bending shapes which leads to a trailing edge geometry with enhanced vorticity generation and viscous dissipation. Furthermore, the difference in actuation methods impacts the inertia coefficient characterizing the plate oscillations, especially for large amplitudes. It is found that the inertia coefficient strongly depends on the tip deflection amplitude and the Reynolds number, and actuation method, especially for larger amplitudes.more » « less
-
Yeh, Peter D.; Demirer, Ersan; Alexeev, Alexander (, Physical Review Fluids)
An official website of the United States government
